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As referenced in the subcontract, the work included three major goals: (1) study the 
performance of an ASCI application, (2) study tradeoffs in using the second CPU in 
coprocessor mode to optimize use of the L3 scratchpad memory for performing vector-
like gather/scatter and streamlining operations, and (3) perform simulator studies of 
hardware phase detection and identification.  We made some modifications to the work 
contract.  Work involving the integration of a cache-conscious data placement algorithm 
to improve cache utilization on BlueGene/L has been added and work involving the L3 
scratchpad memory has been eliminated.  This was explained in the previous milestones. 
 
In this milestone, we continue to focus on the last goal by modifying a cycle-accurate 
simulator, sim-alpha [4].  As premise to hardware phase detection and identification, we 
need to have an infrastructure for testing various cache-conscious data placement 
methods. For this milestone, we discuss the completed framework that handles cache-
conscious placement optimizations, which includes profiling data accesses and handling 
remapped addresses. We will also introduce an algorithm (ccdp profiling tool) that we 
implemented for assigning remapped addresses for a given code. Our performance results 
show that by using our ccdp profiling tool, we achieve reduced miss rates and an 
improved overall simulation performance. For our test cases, we use four applications 
from the SPEC CPU 2000 suite [2].  
 
In our past milestones, we studied research that involves implementing cache-conscious 
data placement techniques. By becoming more familiar with previous research, we can 
make better decisions on designing our cache-conscious profiling tool.  It is important to 
have a firm understanding of the existing techniques that have proven to be efficient at 
improving memory performance, since our tool will produce trace files as input to our 
enhanced simulator framework. 
 
 
 
 
 
 
 
 
 
 
 
 



1  Background 
 
1.1 Previous Approach for Identifying Frequent Item sets 
 
After researching Chilimbi and Hirzel’s Dynamic Hot Data Streams [3] technique, which 
detects and prefetches frequently accessed data streams, we noticed that their algorithm is 
somewhat limited when it comes to determining access patterns. Their streams are 
composed of consecutively accessed data. A possible solution is to broaden the range of 
frequent access patterns by placing fewer restrictions on the access patterns.  Instead of 
defining a stream to consist of only consecutive access, allow for a few interleaved 
accesses as well.  A possible solution is to apply an algorithm like sequential pattern 
mining, which we discussed in previous milestones. In this section, we give a recap on 
the idea and problems we encountered when trying to use these pattern mining tools.  
 
The primary goal behind the sequential pattern mining methodology is to solve a problem 
that involves examining an exponential number of subsequence patterns.  It is a 
challenging problem since it needs to examine a combinatorial, large number of 
subsequence patterns.  Pattern mining techniques can result in extremely long processing 
time when mining the addresses in cache-access traces for highly memory-bound 
applications.  
 
There are a number of different algorithms that are developed to optimize this 
challenging mining process. In general, mining methods adapt a multiple-pass, candidate-
generation-and-test approach.  Many methods follow the Apriority-like methodology that 
substantially reduces the working set (i.e., cache-access trace) being examined.  The 
formal definition states that when given a set of sequences, where each sequence consists 
of a list of elements (i.e., set of addresses), and given a specified minimum support 
constraint, the mining method will find all of the frequent subsequences that occur no less 
than the minimum support constraint [7].  
  
In order to allow for faster and more efficient processing, a refined method needs to be 
utilized.  For our initial efforts in finding the most frequent virtual addresses, we chose to 
explore a sequential pattern mining method called PrefixSpan [7] that focuses on prefix-
projection.  We initially chose this algorithm since we have a tool, referred to as a 
frequent itemset tool that is readily available to us and simulates PrefixSpan. In the third 
milestone, we conducted some experiments using this tool and provided some promising 
results. 
 
To give a quick overview of this algorithm, PrefixSpan mines the complete list of 
frequent patterns but also reduces the size of projected databases.  This leads to faster and 
more efficient processing.  The goal is to use a more scalable approach to mining.  
Instead of considering all possible occurrences of frequent subsequences, the projection is 
based only on frequent prefix subsequences since any frequent subsequence can be found 
by growing a frequent prefix.  
 
In theory, this approach seems sound.  However, having further used the frequent item set 
tool excessively for identifying frequent addresses in our cache-access traces, we 



encountered a few problems.  Although the tool follows the algorithm quite accurately, it 
can only sample a small window of instructions at a time.  The tool is not optimized to 
handle a large database of addresses since it currently uses the entire footprint of a system 
with a gigabyte of memory.  
 
Even though the frequent items et tool allowed the user to specify constraints like gap 
width (e.g., maximum number of addresses that can exist between items in a set,), 
window slider width, and the amount it can slide, it did not identified closed sets which 
posses another real problem.  A single address from a trace would appear in multiple 
sequences, which gives a false representation of a frequent item set.   
 
Another tool we considered is a fast and memory efficient algorithm, DCI Closed [6], 
which was recently presented at an IEEE Frequent Itemset Mining Implementations 
Workshop. This algorithm focuses on our previous problem of duplicate detection of 
frequent itemset. It first detects and discards these duplicate item sets and displays only 
closed item sets.  
 
Having tested their tool, it was clear that the algorithm demonstrates efficient memory 
usage and was proven to be fast at generating results for large traces.  We were able to 
modify the tool to handle 64-bit addresses in order for it to read our alpha memory traces.  
Unfortunately, we soon discovered that this tool was not going to be a helpful solution.  It 
does not account for addresses that occur within close proximity of each other. Thus, it 
does not preserve temporal locality. This tool only detects closed item sets for an entire 
trace, grouping addresses that appear very frequently but do not occur close together in 
time. 
 
In general, these sequential pattern mining algorithms do not seem to be an efficient 
resource for detecting frequent addresses for our initial cache placement purposes.  We 
are most interested in preserving temporal locality for addresses in relation to other 
addresses in a memory trace.  The frequent itemset tool that simulated the PrefixSpan 
approach seemed to have the most potential as a pattern mining tool for our research 
purposes, but needs to be optimized to be more memory efficient and to detect closed 
item sets.    
 
 
1.2 Integrating Temporal Ordering Information 
 
Having temporal locality information on the elements that are accessed around the same 
time can be a powerful tool.  Closely accessed elements can continuously evict each 
other, causing the system to propagate many cache conflict misses.  Being aware of these 
particular elements can allow for better decisions to be made for data placement.  
 
Temporal relationship graphs are useful in facilitating placement decisions.  They are 
weighted constraint graphs that contain nodes, which can be any element from a virtual 
address to a procedure call, and edges, which represent the temporal relationship between 
nodes.  Thus, the higher the weighted edge values, the stronger the temporal 
relationships.  This type of temporal information is used in placement algorithms when 



nodes are merged together to create a single linear representation of the most frequent 
elements of the graph.  
 
Gloy and Smith [5] devised a variation of a placement algorithm that uses temporal 
relationship graphs.  For purposes of procedure placement, these temporal relationship 
graphs are defined for code-block granularity.  Their algorithm uses the temporal 
ordering information that is extracted from a profiler-generated trace, along with 
instruction cache configuration and procedure sizes, to develop an efficient conflict cost 
metric. This metric, which was later applied in Calder et al.'s CCDP algorithm [1], is used 
to quantify an edge value for the graphs.  With these edges and nodes set in the graphs, 
techniques for merging the nodes into one single chain can then be applied.  Nodes with 
heavily weighted edges are used to place procedures in close proximity in the address 
space.  
 
Having researched this approach, we found it to be quite effective in finding the 
frequently accessed addresses for our cache placement tool. It is unique to the properties 
of a cache structure, unlike sequential pattern mining techniques, and can span a large 
database of elements. 
 
 
1.3 Approach Selected for CCDP Profiling Tool 
 
In order to validate that our framework for sim-alpha is working properly, it is essential 
to have a cache-conscious algorithm that will generate remapped addresses for the 
simulator.  Since we do not have access to any tools that automatically conduct cache-
conscious data placement techniques, we have to carefully study previous approaches 
taken and develop our own tool.  We looked at a number of previous cache-conscious 
data placement algorithms and tools that can be used for finding frequent addresses. After 
much trial-and-error, we decided to take a combination of a couple of approaches.  
 
The cache-conscious data placement algorithm that we developed for testing our 
framework closely follows the algorithm used by Calder et al.  However, there are some 
subtle modifications.  When using the temporal relationship graphs to do data placement, 
we assign the actual virtual addresses to be the nodes of the graphs.  Calder et al. use 
objects (variables) as nodes to the graphs as well as a customized version of malloc for 
handling heap addresses.  Since our framework for the simulator catalogs all of the 
virtual addresses that are used by the level-one data cache, we do not have to detect the 
addresses associated with heap objects. We use the low-level features of the simulator to 
our advantage.  
 
2 Framework Design and Setup 
 
In this section, we describe the design and implementation of our cache-conscious data 
placement framework for sim-alpha.  This infrastructure is composed of three main 
components.  First, sim-alpha is modified to catalog all data accesses.  Second, a CCDP 
profiling tool is implemented to identify the temporal relationships of these accesses and 
remap their virtual addresses to minimize cache misses. The data placement algorithm 



used in this tool is based on the framework used by Calder et al. Third, sim-alpha is 
further modified to properly initialize and use the remapped virtual address. The primary 
goal of this design is to reduce the cache miss rate by remapping memory references in 
the level-one data cache. 
 
In the next two sections, we will discuss the first and third infrastructure components, 
which are the actual modifications that are made to the simulator for gathering baseline 
information that is pertinent to address remapping, and delivering the remapped 
addresses. 
 
 
2.1 Collecting Baseline Information 
 
The first step in applying any cache-conscious data placement optimizations is to profile 
to applications being run in the simulator. Profiling involves gathering all memory 
accesses to the data cache and cataloging their associated reference types.  
 
In the simulator, we need to identify the pipeline stages where accesses to the level-one 
data cache occur.  There are two stages in Sim-alpha where these accesses occur.  In the 
writeback stage, the dependent chain of completed instructions from the event queue, 
which holds all instructions that are fetched and issued, are checked and marked “ready” 
for processing.  For our purposes, we are interested in what happens when a load or store 
is picked from the event queue.  From looking at the simulation code and documentation, 
we discovered that within the writeback stage, load instructions access the data cache and 
store instructions are marked as “ready”  for accessing the data cache.  Store instructions 
will then access the data cache in the commit stage, where instructions are also retired 
from the reorder buffer and the architectural register file is updated.  
 
When the data cache is accessed from both these stages, a cache function is called.  In 
order to isolate the placement of our code in the simulator, we chose the cache function 
location.  Inside the cache function, we have added code to output the virtual address, 
used by the data cache, to a file.     
 
Along with extracting the virtual address, we also determine the reference type of this 
address.  We created a separate module, ccdp, for sim-alpha that holds all the functions 
needed for our new framework.  There are four reference types that our framework 
recognizes: stack, constant, global, and heap.  The ranges for these reference types can be 
tracked inside the loader module, which naturally loads the program executable before 
simulation begins.  Static information, such as constants, global and initial stack data, is 
placed in the virtual memory space at this point.  There are important break points that 
are assigned while the program is being loaded.  We use these break points to determine 
which type of data is associated with the addresses we profile.   
 
After extracting all of the memory accesses of a given application and their type, we can 
then use that as an input file to our cache-conscious data placement profiling tool.  
 
 



2.2 Remapping Memory References 
 
The second major feature of our framework is the remapping of memory references.  
Given a list of virtual addresses and their remapped value, we can selectively remap 
virtual addresses in the simulator.  
 
Before simulation begins, a hash table needs to be created and initialized.  Since there is 
such a large number of addresses (264 ) that exist in the modeled machine, it is important 
to implement a hash table to handle address lookups.  All hash functions that initialize, 
insert values, and retrieve values from the hash table are located in our ccdp module.  
 
As programs run in the simulator, load and store instructions will be accessing the data 
cache with their assigned virtual addresses.  In order to integrate the remapped addresses, 
we need to do the virtual address look-up at this same phase in the simulator.  
 
In the cache access function, we perform a lookup in the hash table, which contains all 
the virtual addresses we translated and their remapped values.  Every time the cache 
access function is called, we check to make sure it is performing a data cache lookup and 
we check to see if the address exists in the hash table.  If it does exist in the hash table, 
we replace the old address value with the remapped address value.  If the address is not in 
hash table, then we just proceed with the original address. 
 
A caveat of this method is that the remapped memory locations might not be properly 
initialized.  When first attempting to remap addresses in the simulator, one of the 
remapped addresses would stall the simulator.  The simulator would recognize the 
remapped address as a bogus or misspeculated address.  This was occurring since we had 
not initialized the remapped addresses before running our test programs.  Therefore, we 
created another initialization function in the simulator to handle this problem.  When the 
program's executable is first loaded in the simulator, it copies the data to its virtual 
memory space and in this process, that memory block is initialized.  By calling our 
initialization function after loading the program and before simulation, we resolved this 
problem by copying the initial state into the remapped memory locations.  
 
Once the simulator runs a program with our added remapping features enabled, the 
simulator performs cache-conscious data placement.  In the results section of this report, 
we discuss some of the noticeable performance improves, which include reduced data 
cache miss rates. 
 
2.3 Cache-Conscious Data Placement Profiling Tool 
 
To determine the most effective addresses for remapping, we need an efficient CCDP 
tool to profile all the reference to the level-one data cache.  These references were 
gathered during a profile run of our modified simulator.  In this section, we will explain 
the algorithm that was designed to perform cache-conscious data placement and test the 
remapping functionality of our simulation framework. In this section, we will explain the 
procedures and functions used for our profiling tool. 
 



 
Phase 1. Catalog All References: 
 
Before using this tool, a file, which contains all the profiled data cache references and 
their types, will need to be provided as input to the CCDP tool. This file is provided after 
the first profile run of the simulator, which we discussed earlier. 
 
The first step in our CCDP algorithm is to create and initialize a hash table that will hold 
all of the addresses, their reference type, and a frequency counter.  After initialization, the 
input file is scanned and each address is looked up in the hash table. If the address is not 
found in any of the entries, the address is added to the hash table. If the address does exist 
in the hash table, then its frequency counter is incremented. The purpose of this hash 
table is to catalog all references that were used in the simulator's data cache. This table is 
then used to construct a constraint graph later. 
 
 
Phase 2. Create Temporal Relationship Graph Structure: 
 
Using the cataloged frequencies of each address in the hash table, a one dimensional 
array with the top N most frequently accessed addresses is created, where the user 
specifies N  (default being 5,000).  All of these addresses will then be entries in the 
temporal relationship graph. 
 
The temporal relationship graph is a weighted constraint graph with its nodes being the 
most frequently accessed references, and its edges being their temporal relationship in the 
data cache.  When first constructing this graph, some data cache properties of the 
simulator need to be considered.   
 
To begin building the graph, we needed to know the number of addresses that will be 
remapped and the size of the data cache, which is determined by multiplying the number 
of sets, blocks, and words of the simulator. This cache size measurement is important 
when estimating the temporal relationships of the addresses.  
 
The graph structure is represented using a two-dimensional triangular array.  Two copies 
of the graph are created at this early phase.  One is used as a reference to the original 
graph and the other copy is a working graph, which is used to apply changes made after 
nodes are merged.    
 
Phase 3. Find Temporal Relationships: 
 
After the graphs are constructed, we find the temporal relationships between all the 
nodes.  The method used was also used in Calder et al.'s algorithm and is referred to as 
the cost conflict metric.  The weights of an ordered set of recently referenced addresses 
are maintained by a queue, which can grow to a maximum size no greater than two times 
the size of the cache.  
 



Using the given input file, the cost conflict metric processes one address at a time. When 
an address is processed, the address is first inserted at the front of the queue to preserve 
ordering of the program memory access patterns.  Then the address is walked along the 
queue until it finds a match or the end of is reached.  If a match occurs, it is removed 
from the queue and all the weights of the edges between this address and addresses 
between the front of the queue and the match position are incremented.  These weights 
express the degree in which these accesses are interleaved.  
 
 
Phase 4. Arrange References: 
 
Once the entire trace file has been completely processed, the nodes of the graph need to 
be arranged in a manner such that addresses with high temporal locality are adjacent to 
one another.  By merging each pair of nodes that share the highest weighted edge, we will 
eventually be left with a single chain of accesses.  A major programming consideration in 
choosing two-dimensional arrays over more memory-efficient adjacency lists is the 
complexity of this merging procedure.  
 
When merging nodes, the working graph's edges are searched for the largest weight.  The 
pair of nodes that are associated with this edge are then merged into one single node and 
the working graph is updated.  This update can become a difficult process since we need 
to keep careful track of the conditions and location of the nodes that surround the pair 
being merged.  When updating the graph, there may be instances where a node has edges 
that connect to both the two nodes that are currently being merged.  For this instance, the 
weights of the common edges of the merged pair are summed after merging of the pair is 
completed.  
 
The process for merging nodes in the temporal relationship graph is complete when there 
is only one node remaining in the graph.  This single node is composed of an ordered list 
of all the nodes in the original graph.  This chain of addresses is now ready to be 
remapped for cache placement.  
 
 
Phase 5. Determining Cache Placement: 
 
Using the user-specified configurations of the data cache, the final chain of addresses that 
remain after merging is then broken up into contiguous chunks of addresses that are the 
size of a cache line.  This process apply to either direct-mapped or set associative caches.  
 
Since we remap addresses by grouping reference types, four distinct sections of the 
simulator’s virtual memory space are designated based on their type. Since the simulator 
uses the bottom portion of memory, the top half (i.e., 0x1000000000000000 and up) is 
solely used for remapped addresses that we assign with this tool.  The top three bits of the 
remapped address, will represent the type of reference being remapped, thus pointing to 
four large partitions of the top half of the virtual memory.   
 



 
2.4 Validating the Framework 
 
To validate that our framework is functioning properly and producing correct results, we 
ran a few microbenchmarks [4] that are provided with the Sim-alpha package.  These 
benchmarks test three architectural features of the simulator: the control flow, execution 
core, and memory system.  The level-one and level-two cache latency and the main 
memory latency are evaluated in the memory system tests.  
 
We first ran the microbenchmarks on the baseline simulator and collected all statistical 
information including the output for the programs.  With these statistics in hand, we then 
can make direct comparisons to our framework version.  Since there are two main 
features to our framework, (1) collecting the original virtual addresses and (2) remapping 
the addresses, we ran the microbenchmarks twice.  
 
We checked such parameters as the total number of instructions that were executed and 
committed and the total number of loads and stores issued.  The statistical information 
matched for both runs, and we also generated the same output for all benchmarks that did 
not report timing measurements.  The runs that gathered the original addresses had the 
same latency measurements as the baseline simulator.  For the runs that performed the 
remapping, slightly reduced elapsed time and latency were displayed as well as an 
increase in memory bandwidth, which is to be expected with applications that have fewer 
cache misses. 
 
3 Results 
 
The default configurations in alpha.cfg and mem.cfg were used in our simulations.  They 
are supplied with the sim-alpha package.  One major alteration was the data cache. We 
modified it to be a direct-mapped cache with 1024 sets at 64 bytes per set.  This is also 
similar to the level-one data cache for BlueGene/L.  An overview of the memory 
configurations is listed in the table below.  
 
 

 
Table 1: Sim-alpha Memory System Parameters 



 
 
To simplify the workload, we used Simpoint to find phases of the codes that best 
represent the execution behavior of the entire test programs.  For our test cases, we 
generated simpoints with a k-max of 30 and interval size of 10 million executed 
instructions.   
 
In order to run these individual simpoints, the simulator needs to be run using the fast 
forwarding feature. This can be specified on the command line along with the interval of 
instructions to skip and the simpoint where simulation will start.  When running the 
simulator with fast forwarding enabled, the simulator will skip all of the instructions up 
to the simpoint. When it reaches the simpoint, the simulator starts executing the code 
until the entire simpoint has been executed, which in our case is 10 million instructions.  
All of the SPEC CPU benchmarks were profiled and remapped using simpoints with fast 
forwarding enabled.  We evaluate the entire benchmark by combining the statistics for 
each of their simpoints and distributing them with their weight, which is given by the 
Simpoint tool. 
 
In this section, we present performance measurements for a direct-mapped data cache.  
The graphs show our experimental results for the SPEC CPU 2000 gcc, equake, art, and 
ammp.  The first figure demonstrates the differences in miss rate between the baseline 
and the remapped version of the simulator.  The second figure shows the performance of 
the simulator in elapsed time.  
 

 
 

Figure 1: Sim-alpha L1 Data Cache Miss Rate  



 
 
The results from both experiments show that by using a cache-conscious data placement 
layout of the accesses to the level-one data cache, we can obtain better performance.  It is 
clear that when using a direct-mapped cache configuration, the system has a lower miss 
rate when using cache-conscious data placement. There is a 9-90% decrease in miss rate 
for these four test cases.  Since each benchmark has its own distinct input data set and has 
different execution behavior, our remapping tool will affect each benchmark differently.  
Some benchmarks have more distinct access patterns that occur frequently, thus allowing 
for better cache utilization when applying the remapped addresses.  For the overall 
performance of the simulator, there was a 14-33% improvement. 
 

 
 

Figure 2: Sim-alpha Runtime Performance 
 
 
4 Conclusions 
 
This design project involved modifying a cycle-accurate simulator to perform cache-
conscious data placement optimizations and constructing a scheme for verifying its 
correctness.  Using such an optimization can potentially improve the cache performance 
by reducing the number of cache misses.  
 



In this design project, we were able to complete this framework.  There are three major 
components for the overall project.  First, the sim-alpha simulator was modified to 
catalog all data accesses.  Second, a profiling tool was fully implemented to identify the 
temporal relationships of these accesses and remap their virtual addresses to minimize 
cache misses.  Third, sim-alpha was further modified to properly initialize and use the 
remapped virtual address. 
  
 To verify that the framework was running properly, we used the same microbenchmark 
suite that was used for verifying the correctness for sim-alpha simulator.  Using this 
benchmark suite, we successfully validated that the program output and simulations are 
correct.  
  
For our performance results, we used four applications from the SPEC CPU 2000 
benchmark suite. We gathered statistics relevant for the level-one data cache miss rates as 
well as the simulation elapsed time. For all statistics gathered, there was an improved for 
all four of the benchmarks. For the miss rates, there was a decrease ranging from 9-90% 
and for the simulation elapsed time, there was an overall speedup from 14-33%. From our 
experiments, we show that using a cache-conscious data placement optimization can 
improve system performance. 
 
With this framework available, we can begin using the simulator to apply our studies of 
phase detection. Other cache-conscious data placement algorithms can also be tested 
using this framework.  
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